cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337376 Primorial deflation (numerator) of Doudna-tree.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 9, 8, 7, 10, 5, 6, 25, 9, 27, 16, 11, 14, 21, 20, 7, 5, 15, 12, 49, 50, 25, 9, 125, 27, 81, 32, 13, 22, 33, 28, 55, 21, 63, 40, 11, 14, 7, 10, 35, 15, 45, 24, 121, 98, 147, 100, 49, 25, 25, 18, 343, 250, 125, 27, 625, 81, 243, 64, 17, 26, 39, 44, 65, 33, 99, 56, 91, 110, 55, 42, 275, 63, 189, 80, 13, 22
Offset: 0

Views

Author

Keywords

Comments

Tree with both numerators (this sequence) and denominators (A337377) shown starts as:
1/1
|
2
-
1
3 / \ 4
- ................. ................. -
2 1
5 / \ 3 9 / \ 8
- ....... ....... - - ....... ....... -
3 1 4 1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 5 6 25 9 27 16
- -- - - -- - -- --
5 3 2 1 9 2 8 1
/ \ / \ / \ / \ / \ / \ / \ / \
11 14 21 20 7 5 15 12 49 50 25 9 125 27 81 32
-- -- -- -- - - -- -- -- -- -- - --- -- -- --
7 5 10 3 3 1 4 1 25 9 6 1 27 4 16 1
etc.

Crossrefs

A005940, A319626, A337375 are used in a formula defining this sequence.
Cf. A064989.
Cf. A337377 (denominators).
A000265, A001222, A003961, A007814, A337821 are used to express relationship between terms of this sequence.
Cf. also A329886, A346096.

Programs

  • Mathematica
    Array[#1/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &@ Function[p, Times @@ Flatten@ Table[Prime[Count[Flatten[#], 0] + 1]^#[[1, 1]] &@ Take[p, -i], {i, Length[p]}]]@ Partition[Split[Join[IntegerDigits[# - 1, 2], {2}]], 2] &, 82] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    A337376(n) = A319626(A005940(1+n));

Formula

a(n) = A319626(A005940(1+n)).
a(n) = A005940(1+n) / A337375(n).
a(2*n) = A003961(a(n)).
If A007814(n+1) < A337821(n+1) then a(2*n+1) = a(n), otherwise a(2*n+1) = 2 * a(n).
If A337377(n) mod 2 = 0 then a(2*n+1) = a(n), otherwise a(2*n+1) = 2 * a(n).
A000265(a(2*n+1)) = A000265(a(n)).
A001222(a(2*n)) = A001222(A337377(2*n)) = A001222(a(n)).
A001222(a(2*n+1)) - A001222(A337377(2*n+1)) = 1 + A001222(a(n)) - A001222(A337377(n)).