A337392 Minimum m such that the convergence speed of m^^m is equal to n >= 2, where A317905(n) represents the convergence speed of m^^m (and m = A067251(n), the n-th non-multiple of 10).
5, 25, 15, 95, 65, 385, 255, 1535, 1025, 6145, 4095, 24575, 16385, 98305, 65535, 393215, 262145, 1572865, 1048575, 6291455, 4194305, 25165825, 16777215, 100663295, 67108865, 402653185, 268435455, 1610612735, 1073741825, 6442450945, 4294967295, 25769803775
Offset: 2
Examples
For n = 4, a(4) = 15 by Corollary 1 of "https://doi.org/10.7546/nntdm.2021.27.4.43-61" (see Equation 20). - _Marco Ripà_, Dec 19 2021
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
Links
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,4).
Formula
a(n) = 2^n*(2*cos(Pi*(n-1)/2) - 4*sin(Pi*(n-1)/2) + 5) + 1 iff n == {2,3} (mod 4), 2^n*(-2*cos(Pi*(n-1)/2) + 4*sin(Pi*(n-1)/2) + 5) - 1 iff n == {0,1} (mod 4), for n >= 2.
From Bruno Berselli, Sep 11 2020: (Start)
O.g.f.: 5*x^2*(1 + 5*x + 4*x^3)/((1 - 2*x)*(1 + 2*x)*(1 + x^2)).
a(n) = (2 - (-1)^n)*2^n + i^((n+1)*(n+2)), with i = sqrt(-1). (End)
From Marco Ripà, Dec 19 2021: (Start)
n = v_2(a(n)^2 - 1) - 1, where v_2(x) indicates the 2-adic valuation of x. (End)
Comments