cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337401 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a tube of cross section 2w X 2w where the walk starts at the center of the tube's side.

Original entry on oeis.org

5, 19, 21, 72, 91, 93, 258, 383, 407, 409, 926, 1638, 1821, 1851, 1853, 3176, 6856, 8019, 8295, 8331, 8333, 11000, 28810, 35506, 37531, 37921, 37963, 37965, 36988, 119106, 155492, 168399, 171691, 172215, 172263, 172265, 125302, 492766, 683126, 758182, 781811, 786823, 787501, 787555, 787557
Offset: 1

Views

Author

Scott R. Shannon, Aug 26 2020

Keywords

Examples

			T(2,1) = 19 as after a step in one of the two directions toward the adjacent tube side the walk must turn along the side; this eliminates the 2-step straight walk in those two directions, so the total number of walks is 4*4 + 5 - 2 = 19.
The table begins:
5;
19,21;
72,91,93;
258,383,407,409;
926,1638,1821,1851,1853;
3176,6856,8019,8295,8331,8333;
11000,28810,35506,37531,37921,37963,37965;
36988,119106,155492,168399,171691,172215,172263,172265;
125302,492766,683126,758182,781811, 786823,787501,787555,787557;
414518,2013142,2981996,3393526,3545117,3585297,3592551,3593403,3593463,3593465;
		

Crossrefs

Cf. A337400 (start at middle of tube), A337403 (start at tube's edge), A116904 (w->infinity), A001412, A337023, A259808, A039648.

Formula

For w>=n, T(n,w) = A116904(n).

A338125 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined between two infinite planes a distance 2w apart where the walk starts at the middle point between the planes.

Original entry on oeis.org

6, 28, 30, 124, 148, 150, 516, 692, 724, 726, 2156, 3196, 3492, 3532, 3534, 8804, 14324, 16428, 16876, 16924, 16926, 36388, 64076, 76956, 80700, 81332, 81388, 81390, 148452, 282716, 354740, 380964, 387052, 387900, 387964, 387966, 609812, 1251044, 1631420, 1795212, 1843452, 1852716, 1853812, 1853884, 1853886
Offset: 1

Views

Author

Scott R. Shannon, Oct 11 2020

Keywords

Examples

			T(2,1) = 28 as after a step in one of the two directions towards the planes the walk must turn along the plane; this eliminates the 2-step straight walk in those two directions, so the total number of walks is A001412(2) - 2 = 30 - 2 = 28.
The table begins:
6;
28,30;
124,148,150;
516,692,724,726;
2156,3196,3492,3532,3534;
8804,14324,16428,16876,16924,16926;
36388,64076,76956,80700,81332,81388,81390;
148452,282716,354740,380964,387052,387900,387964,387966;
609812,1251044,1631420,1795212,1843452,1852716,1853812,1853884,1853886;
2478484,5493804,7431100,8377908,8712892,8795020,8808420,8809796,8809876,8809878;
		

Crossrefs

Cf. A338126 (start on a plane), A001412 (w->infinity), A001412, A337023, A337400, A039648.

Formula

For w>=n, T(n,w) = A001412(n).

A337403 Table read by antidiagonals: T(w,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a tube of cross section w x w where the walk starts at the tube's edge.

Original entry on oeis.org

4, 12, 4, 36, 14, 4, 98, 54, 14, 4, 274, 200, 56, 14, 4, 702, 744, 224, 56, 14, 4, 1854, 2626, 926, 226, 56, 14, 4, 4614, 9186, 3738, 956, 226, 56, 14, 4, 11778, 31122, 15056, 4014, 958, 226, 56, 14, 4, 28914, 105766, 59092, 17074, 4050, 958, 226, 56, 14, 4
Offset: 1

Views

Author

Scott R. Shannon, Aug 26 2020

Keywords

Examples

			T(1,2) = 12 as after a step in one of the two directions toward the adjacent tube edge the walk must turn along the side; this eliminates the 2-step straight walk in those two directions, so the total number of walks is 2*3 + 2*4 - 2 = 12.
The table begins:
4 12 36  98 274  702  1854  4614  11778   28914   72394   176310    435346...
4 14 54 200 744 2626  9186 31122 105766  351798 1175726  3859350  12729142...
4 14 56 224 926 3738 15056 59092 230254  881850 3367124 12712194  47952018...
4 14 56 226 956 4014 17074 71774 301578 1251362 5170636 21143094  86148002...
4 14 56 226 958 4050 17464 75060 325064 1400650 6040372 25882446 110668184...
4 14 56 226 958 4052 17506 75584 330070 1440668 6321926 27685144 121407404...
4 14 56 226 958 4052 17508 75632 330748 1447916 6386092 28180426 124857572...
4 14 56 226 958 4052 17508 75634 330802 1448768 6396174 28278426 125681952...
4 14 56 226 958 4052 17508 75634 330804 1448828 6397220 28292004 125825794...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397286 28293264 125843600...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293336 125845094...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845172...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845174...
		

Crossrefs

Cf. A337400 (start at middle of tube), A337401 (start at center of tube's side) A259808 (w->infinity), A001412, A337023, A259808, A039648.

Formula

For n <= w, T(w,n) = A259808(n).

A338126 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined between two infinite planes a distance w apart where the walk starts on one of the planes.

Original entry on oeis.org

5, 20, 21, 80, 92, 93, 304, 392, 408, 409, 1168, 1684, 1832, 1852, 1853, 4348, 7036, 8084, 8308, 8332, 8333, 16336, 29396, 35752, 37620, 37936, 37964, 37965, 60208, 120776, 155756, 168768, 171808, 172232, 172264, 172265, 223352, 497196, 677856, 758340, 782344, 786972, 787520, 787556, 787557
Offset: 1

Views

Author

Scott R. Shannon, Oct 11 2020

Keywords

Examples

			T(2,1) = 20 as after one step towards the opposite plane the walk must turn along that plane; this eliminates the 2-step straight walk in that direction, so the total number of walks is A116904(2) - 1 = 21 - 1 = 20.
The table begins:
5;
20,21;
80,92,93;
304,392,408,409;
1168,1684,1832,1852,1853;
4348,7036,8084,8308,8332,8333;
16336,29396,35752,37620,37936,37964,37965;
60208,120776,155756,168768,171808,172232,172264,172265;
223352,497196,677856,758340,782344,786972,787520,787556,787557;
817852,2026220,2920764,3379476,3545108,3586040,3592736,3593424,3593464,3593465;
		

Crossrefs

Cf. A338125 (start between planes), A116904 (w->infinity), A001412, A337023, A337400, A039648.

Formula

For w>=n, T(n,w) = A116904(n).

A338127 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined between two infinite horizontal planes a distance 2w apart and an orthogonal plane on the y-z axes, where the walk starts at the middle point between the planes on the y-z plane.

Original entry on oeis.org

5, 19, 21, 73, 91, 93, 275, 383, 407, 409, 1075, 1639, 1821, 1851, 1853, 4133, 6881, 8019, 8295, 8331, 8333, 16249, 29155, 35507, 37531, 37921, 37963, 37965, 63293, 122491, 155525, 168399, 171691, 172215, 172263, 172265, 249445, 519351, 683711, 758183, 781811, 786823, 787501, 787555, 787557
Offset: 1

Views

Author

Scott R. Shannon, Oct 11 2020

Keywords

Examples

			T(2,1) = 19 as after a step in one of the two directions towards the horizontal planes the walk must turn along the planes; this eliminates the 2-step straight walks in those two directions, so the total number of walks is A116904(2) - 2 = 21 - 2 = 19.
The table begins:
5;
19, 21;
73, 91, 93;
275, 383, 407, 409;
1075, 1639, 1821, 1851, 1853;
4133, 6881, 8019, 8295, 8331, 8333;
16249, 29155, 35507, 37531, 37921, 37963, 37965;
63293, 122491, 155525, 168399, 171691, 172215, 172263, 172265;
249445, 519351, 683711, 758183, 781811, 786823, 787501, 787555, 787557;
		

Crossrefs

Cf. A116904 (w->infinity), A338125, A001412, A337023, A337400, A039648.

Formula

For w>=n, T(n,w) = A116904(n).
Showing 1-5 of 5 results.