A337401 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a tube of cross section 2w X 2w where the walk starts at the center of the tube's side.
5, 19, 21, 72, 91, 93, 258, 383, 407, 409, 926, 1638, 1821, 1851, 1853, 3176, 6856, 8019, 8295, 8331, 8333, 11000, 28810, 35506, 37531, 37921, 37963, 37965, 36988, 119106, 155492, 168399, 171691, 172215, 172263, 172265, 125302, 492766, 683126, 758182, 781811, 786823, 787501, 787555, 787557
Offset: 1
Examples
T(2,1) = 19 as after a step in one of the two directions toward the adjacent tube side the walk must turn along the side; this eliminates the 2-step straight walk in those two directions, so the total number of walks is 4*4 + 5 - 2 = 19. The table begins: 5; 19,21; 72,91,93; 258,383,407,409; 926,1638,1821,1851,1853; 3176,6856,8019,8295,8331,8333; 11000,28810,35506,37531,37921,37963,37965; 36988,119106,155492,168399,171691,172215,172263,172265; 125302,492766,683126,758182,781811, 786823,787501,787555,787557; 414518,2013142,2981996,3393526,3545117,3585297,3592551,3593403,3593463,3593465;
Links
- Scott R. Shannon, Data for n=1 to n=14.
Crossrefs
Formula
For w>=n, T(n,w) = A116904(n).