cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337405 A fractal spiral on a 2D square lattice, one digit per cell, starting at the origin with 0. The odd digits reproduce the spiral itself at another scale (design of the digits is shown below).

Original entry on oeis.org

0, 1, 3, 2, 5, 7, 9, 4, 10, 6, 8, 21, 11, 20, 22, 23, 13, 24, 26, 28, 40, 42, 44, 25, 15, 17, 46, 48, 60, 62, 19, 31, 12, 33, 27, 35, 29, 14, 64, 66, 16, 37, 68, 41, 80, 18, 82, 84, 86, 43, 30, 88, 32, 200, 45, 34, 202, 47, 49, 201, 204, 36, 61, 206, 208, 220, 222, 63, 39, 65, 51, 67, 53, 224, 226
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Aug 26 2020

Keywords

Comments

Here's the font that's used; digits are separated horizontally by a single empty column and vertically by a single empty row. The same digit design was selected 52 years ago by Jonathan Vos Post.
.
%%%...%...%%%...%%%...%.%...%%%...%%%...%%%...%%%...%%%
%.%...%.....%.....%...%.%...%.....%.......%...%.%...%.%
%.%...%...%%%...%%%...%%%...%%%...%%%.....%...%%%...%%%
%.%...%...%.......%.....%.....%...%.%.....%...%.%.....%
%%%...%...%%%...%%%.....%...%%%...%%%.....%...%%%...%%%
.
The spiral's elements are the successive digits of the sequence. The sequence is the lexicographically earliest one of distinct nonnegative terms that starts exactly in the center of the zero formed by the first 12 odd digits (see below).

Examples

			The start of the spiral, with the odd digits forming a zero:
.
       2——3——1——3——2——4
       |              |
       2  9——4——1——0  .
       |  |        |  |
       2  7  0——1  6  .
       |  |     |  |  |
       0  5——2——3  8
       |           |
       2——1——1——1——2
.
The first eight turns of the spiral (the odd digits have brackets which should help the visualization of the scaled new digits):
.
[1]—[3]——2——[1]—[5]—[1]——0——[3]——2——[3]——2——2——[3]——4——2——[1]—[7]—[1]
.|                                                                 |
.2  [3]——2——[1]——2——[5]——6——[5]——8——[7]——0——2——[1]——4——2——[1]——6  [1]
.|   |                                                         |   |
[1] [9]  6——[9]—[5]—[5]——8——[1]—[5]—[7]——2——0——[3]——2——0——[5]  2  [1]
.|   |   |                                                 |   |   |
.0   4   0   2———0——[1]——2———0———4——[3]——6——6——[1]——2——0  [5]  0  [1]
.|   |   |   |                                         |   |   |   |
[1] [5]  4  [9] [3]—[7]——6———8———4——[1]——8——0——[1]——8  6  [9] [7] [1]
.|   |   |   |   |                                  |  |   |   |   |
.8   2   2   4   6   4———6———4———8———6———0——6———2   8  2   8   2   2
.|   |   |   |   |   |                          |   |  |   |   |   |
[9] [5]  8  [7] [1] [7]  2——[3]—[1]—[3]——2——4  [1]  2  0  [3] [1] [1]
.|   |   |   |   |   |   |                  |   |   |  |   |   |   |
.6  [1]  2   4   6  [1]  2  [9]——4——[1]——0  2  [9]  8  8  [7]  8   0
.|   |   |   |   |   |   |   |           |  |   |   |  |   |   |   |
[9] [9]  2   2   6  [5]  2  [7]  0——[1]  6  6  [3]  4  2  [1] [7] [5]
.|   |   |   |   |   |   |   |       |   |  |   |   |  |   |   |   |
.0   0   6   0   4  [1]  0  [5]——2——[3]  8  2  [1]  8  2  [7]  2  [1]
.|   |   |   |   |   |   |               |  |   |   |  |   |   |   |
[3] [1]  2   2   6  [5]  2——[1]—[1]—[1]——2  8  [1]  6  0  [3] [7] [1]
.|   |   |   |   |   |                      |   |   |  |   |   |   |
.2   2   2   4   4   2———4———4———2———4———0——4   2   4  2   8   4   4
.|   |   |   |   |                              |   |  |   |   |   |
[9] [9]  4  [3] [1]—[9]——2——[5]—[3]—[7]——2—[3]—[3] [3] 2  [5] [7] [1]
.|   |   |   |                                      |  |   |   |   |
.0  [7]  2  [5]——4———0———0———2———2——[3]——8——8———0——[3] 2  [7]  6  [1]
.|   |   |                                             |   |   |   |
.2  [7]  2——[3]—[5]—[7]——6——[1]—[5]—[5]——6—[9]—[3]—[3]—6  [5] [7] [3]
.|   |                                                     |   |   |
.0  [7]——4———4———2——[9]——8——[7]——8———2———4——2———0——[5]—8——[3]  8   .
.|                                                             |
[1]—[1]——4——[9]—[9]—[9]——2——[9]—[7]—[9]——0—[9]—[1]—[1]—2——[5]—[9]  .
.
		

Crossrefs

Cf. A126803 (design of the digits), A337115.