A337407 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthotope (hypercube) using k or fewer colors.
1, 2, 1, 3, 6, 1, 4, 24, 218, 1, 5, 70, 22815, 22409620, 1, 6, 165, 703760, 9651199594275, 629648865090036960064, 1, 7, 336, 10194250, 96076801068337216, 76983765319971869475595432431084156, 272443651709491352597039736725488834366101875164020736, 1
Offset: 1
Examples
Table begins with T(1,1): 1 2 3 4 5 6 7 8 9 ... 1 6 24 70 165 336 616 1044 1665 ... 1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ... For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
Links
- K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications, J. Math. Sci. & Mod. 1 (2018), 158-180.
Crossrefs
Programs
-
Mathematica
m=1; (* dimension of color element, here an edge *) Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]]; FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]); CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]); PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]); pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*) row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))] array[n_, k_] := row[n] /. b -> k Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten
Formula
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
Comments