A337412 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
1, 2, 1, 3, 6, 1, 4, 21, 144, 1, 5, 55, 12111, 49127, 1, 6, 120, 358120, 740360358, 293122232, 1, 7, 231, 5131650, 733776248840, 3168520600399659, 25174334733080, 1, 8, 406, 45528756, 155261523065875, 314848558732420555904, 920040738175691418086226, 30035285091978202824, 1
Offset: 1
Examples
Table begins with T(1,1): 1 2 3 4 5 6 7 8 9 ... 1 6 21 55 120 231 406 666 1035 ... 1 144 12111 358120 5131650 45528756 288936634 1433251296 5887880415 ... For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
Links
- K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications, J. Math. Sci. & Mod. 1 (2018), 158-180.
Crossrefs
Programs
-
Mathematica
m=1; (* dimension of color element, here an edge *) Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]]; FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]); CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]); PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]); pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*) row[m]=b; row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)] array[n_, k_] := row[n] /. b -> k Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten
Formula
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
Comments