A337432 a(n) is the least value of z such that 4/n = 1/x + 1/y + 1/z with 0 < x <= y <= z has at least one solution.
2, 3, 3, 10, 6, 14, 6, 9, 10, 33, 9, 52, 14, 12, 12, 102, 18, 57, 15, 21, 22, 138, 18, 50, 26, 27, 21, 232, 24, 248, 24, 33, 34, 30, 27, 370, 38, 39, 30, 164, 35, 258, 33, 36, 46, 329, 36, 98, 50, 51, 39, 742, 54, 44, 42, 57, 58, 885, 45, 549, 62, 56, 48, 60, 66, 603
Offset: 2
Examples
a(6)=6 because it is the least denominator z in the A192787(6)=8 solutions [x, y, z]: [2, 7, 42], [2, 8, 24], [2, 9, 18], [2, 10, 15], [2, 12, 12], [3, 4, 12], [3, 6, 6], [4, 4, 6]; a(13)=52 because the minimum of z in the A192787(13)=4 solutions is 52: [4, 18, 468], [4, 20, 130], [4, 26, 52], [5, 10, 130].
Links
- Hugo Pfoertner, Table of n, a(n) for n = 2..10000 (first 576 terms from Robert Israel)
Programs
-
Maple
f:= proc(n) local z,x,y; for z from floor(n/4)+1 do for x from floor(n*z/(4*z-n))+1 to z do y:= n*x*z/(4*x*z-n*x-n*z); if y::posint and y >= x and y <= z then return z fi od od end proc: map(f, [$2..100]); # Robert Israel, Oct 14 2020
-
Mathematica
a[n_] := For[z = Floor[n/4] + 1, True, z++, For[x = Floor[n(z/(4z - n))] + 1, x <= z, x++, y = n x z/(4 x z - n x - n z); If[IntegerQ[y] && x <= y <= z, Print[z]; Return [z]]]]; a /@ Range[2, 100] (* Jean-François Alcover, Oct 23 2020, after Robert Israel *)
-
PARI
a337432(n)={my(target=4/n,a,b,c,m=oo);for(a=1\target+1,3\target,my(t=target-1/a);for(b=max(1\t+1,a),2\t,c=1/(t-1/b);if(denominator(c)==1,m=min(m,max(a,max(b,c))))));m}; for(k=2,67,print1(a337432(k),", "))
Comments