A337437 a(n) is the least prime of the form 2^j*3^k - 1, j > 0, k > 0, j + k = n. a(n) = 0 if no such prime exists.
5, 11, 23, 47, 0, 191, 383, 1151, 0, 6911, 6143, 27647, 0, 73727, 497663, 294911, 0, 786431, 17915903, 10616831, 0, 18874367, 188286357653, 169869311, 0, 39182082047, 10319560703, 4076863487, 0, 7247757311, 32614907903, 495338913791, 0, 51539607551, 1174136684543
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..2214
Crossrefs
Cf. A336773.
Programs
-
Maple
f:= proc(n) local k, p; if n mod 4 = 2 and n > 2 then return 0 fi; for k from 1 to n-1 do p:= 2^(n-k)*3^k-1; if isprime(p) then return p fi od; 0 end proc: map(f, [$2..40]); # Robert Israel, Sep 01 2020
-
PARI
for(n=2,36, my(pm=oo); for(j=1,n-1, my(k=n-j,p=2^j*3^k-1);if(isprime(p),pm=min(p,pm))); print1(if(pm==oo,0,pm),", "))
Formula
a(n) = 0 for n = 2 mod 4, n > 2.