cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337451 Number of relatively prime strict compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 4, 2, 10, 8, 20, 14, 34, 52, 72, 90, 146, 172, 244, 390, 502, 680, 956, 1218, 1686, 2104, 3436, 4078, 5786, 7200, 10108, 12626, 17346, 20876, 32836, 38686, 53674, 67144, 91528, 113426, 152810, 189124, 245884, 343350, 428494, 552548, 719156
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 8 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)  (3,5)  (2,7)    (3,7)
  (3,2)     (3,4)  (5,3)  (4,5)    (7,3)
            (4,3)         (5,4)    (2,3,5)
            (5,2)         (7,2)    (2,5,3)
                          (2,3,4)  (3,2,5)
                          (2,4,3)  (3,5,2)
                          (3,2,4)  (5,2,3)
                          (3,4,2)  (5,3,2)
                          (4,2,3)
                          (4,3,2)
		

Crossrefs

A032022 does not require relative primality.
A302698 is the unordered non-strict version.
A332004 is the version allowing 1's.
A337450 is the non-strict version.
A337452 is the unordered version.
A000837 counts relatively prime partitions.
A032020 counts strict compositions.
A078374 counts strict relatively prime partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.
A337561 counts strict pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]