A337462 Number of pairwise coprime compositions of n, where a singleton is not considered coprime unless it is (1).
1, 1, 1, 3, 6, 12, 21, 37, 62, 100, 159, 253, 402, 634, 983, 1491, 2224, 3280, 4813, 7043, 10270, 14888, 21415, 30585, 43400, 61204, 85747, 119295, 164834, 226422, 309663, 422301, 574826, 781236, 1060181, 1436367, 1942588, 2622078, 3531151, 4742315, 6348410
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 12 compositions: (1) (1,1) (1,2) (1,3) (1,4) (2,1) (3,1) (2,3) (1,1,1) (1,1,2) (3,2) (1,2,1) (4,1) (2,1,1) (1,1,3) (1,1,1,1) (1,3,1) (3,1,1) (1,1,1,2) (1,1,2,1) (1,2,1,1) (2,1,1,1) (1,1,1,1,1)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..500
Crossrefs
A000740 counts the relatively prime instead of pairwise coprime version.
A327516 is the unordered version.
A337461 counts these compositions of length 3.
A337561 is the strict case.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A178472 counts compositions with a common factor.
A305713 counts strict pairwise coprime partitions.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337667 counts pairwise non-coprime compositions.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||CoprimeQ@@#&]],{n,0,10}]
Formula
For n > 1, a(n) = A101268(n) - 1.
Comments