A337492 a(n) = a(n-1) + 4*a(n-3) + 2*a(n-4) + 2*a(n-5); a(0) = a(1) = a(2) = 1, a(3) = 5, a(4) = 11.
1, 1, 1, 5, 11, 19, 43, 99, 207, 439, 959, 2071, 4439, 9567, 20647, 44463, 95751, 206351, 444631, 957855, 2063687, 4446415, 9579799, 20639519, 44468263, 95807663, 206418167, 444729855, 958176071
Offset: 0
Examples
Here is one of the 11 ways to tile a 3 X 4 rectangle: ._______ | |_|_|_| | |_|_|_| |_ _ _|_|
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,2,2).
Programs
-
Mathematica
LinearRecurrence[{1, 0, 4, 2, 2}, {1, 1, 1, 5, 11}, 50]
Formula
G.f.: 1/(1-x-4*x^3-2*x^4-2*x^5). - R. J. Mathar, Sep 03 2020
Sum_{k=0..n} a(k) = (a(n+3)+4*a(n)+2*a(n-1)-1)/8. - Sujay Champati, Sep 05 2020
Comments