cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337510 a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1, k-1) + T(n-1,k))^2.

Original entry on oeis.org

1, 2, 6, 52, 3854, 21090612, 629815387162156, 561871511512925116799625359336, 446575758106416254441837050759254156476271759098752411181598
Offset: 0

Views

Author

Glen Gilchrist, Aug 30 2020

Keywords

Comments

Based on Pascal's triangle A007318 by additionally squaring the sum of each term generated. For example, in Pascal, n=3 gives 1,2,1. Here n=3 gives, 1^2, (1+1)^2, 1^2 = 1+4+1.

Examples

			1 = 1
1 + 1 = 2
1 + (1 + 1)^2  + 1 = 1 + 4 + 1 = 6
1 + (1 + 4)^2  + (4 + 1)^2 + 1 = 1 + 25 + 25 + 1 = 52
1 + (1 + 25)^2 + (25 + 25)^2 + (25 + 1)^2 + 1 = 1 + 676 + 2500 + 676 + 1 = 3854.
		

Crossrefs

Programs

  • Python
    def r(i):
      t = [[0, 1, 0], [0, 1, 1, 0]]
      for n in range(2, i+1):
        t.append([0])
        for k in range(1, n+2):
          t[n].append((t[n-1][k-1] + t[n-1][k])**2)
        t[n].append(0)
      return(sum(t[i]))

Formula

a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1,k-1) + T(n-1,k))^2; T(0,0)=1; T(n,-1):=0; T(n,k):=0, n < k.