cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337539 Number of primitive non-deficient numbers (A006039) dividing A337479(n).

Original entry on oeis.org

2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 6, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Sep 20 2020

Keywords

Comments

The numbers in A337479 are those that become a primitive nondeficient number (term of A006039) when each of their prime factors is replaced by the next larger prime number.

Examples

			Table of n, A337479(n), a(n) and the relevant divisors starts:
   n   A337479(n)  a(n)  divisors in A006039
   1      120       2     6, 20;
   2      180       2     6, 20;
   3      300       2     6, 20;
   4      420       4     6, 20, 28, 70;
   5      504       2     6, 28;
   6      630       2     6, 70;
   7      660       2     6, 20;
   8      780       2     6, 20;
   9      924       2     6, 28;
  10      990       1     6;
  11     1020       2     6, 20;
  12     1050       2     6, 70;
		

Crossrefs

A006039, A337479 are used to define this sequence.
See A000203 and A023196 for definitions of deficient and nondeficient.
Subsequence of A337690.
Cf. A337386.

Programs

  • PARI
    isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
    isA006039(n) = ((sigma(n)==(2*n))||isA071395(n));
    A337690(n) = sumdiv(n,d,isA006039(d));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
    isA337479(n) = (isA337386(n)&&(1==sumdiv(n,d,isA337386(d))));
    k=0; for(n=1,2^15,if(isA337479(n),k++; print1(A337690(n), ", ")));

Formula

a(n) = A337690(A337479(n)).