A337539 Number of primitive non-deficient numbers (A006039) dividing A337479(n).
2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 6, 2
Offset: 1
Keywords
Examples
Table of n, A337479(n), a(n) and the relevant divisors starts: n A337479(n) a(n) divisors in A006039 1 120 2 6, 20; 2 180 2 6, 20; 3 300 2 6, 20; 4 420 4 6, 20, 28, 70; 5 504 2 6, 28; 6 630 2 6, 70; 7 660 2 6, 20; 8 780 2 6, 20; 9 924 2 6, 28; 10 990 1 6; 11 1020 2 6, 20; 12 1050 2 6, 70;
Links
- Antti Karttunen, Table of n, a(n) for n = 1..24814
Crossrefs
Programs
-
PARI
isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395 isA006039(n) = ((sigma(n)==(2*n))||isA071395(n)); A337690(n) = sumdiv(n,d,isA006039(d)); A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); }; isA337479(n) = (isA337386(n)&&(1==sumdiv(n,d,isA337386(d)))); k=0; for(n=1,2^15,if(isA337479(n),k++; print1(A337690(n), ", ")));
Comments