A337561 Number of pairwise coprime strict compositions of n, where a singleton is not considered coprime unless it is (1).
1, 1, 0, 2, 2, 4, 8, 6, 16, 12, 22, 40, 40, 66, 48, 74, 74, 154, 210, 228, 242, 240, 286, 394, 806, 536, 840, 654, 1146, 1618, 2036, 2550, 2212, 2006, 2662, 4578, 4170, 7122, 4842, 6012, 6214, 11638, 13560, 16488, 14738, 15444, 16528, 25006, 41002, 32802
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 12 compositions (empty column shown as dot): (1) . (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,1) (3,1) (2,3) (5,1) (2,5) (3,5) (2,7) (3,2) (1,2,3) (3,4) (5,3) (4,5) (4,1) (1,3,2) (4,3) (7,1) (5,4) (2,1,3) (5,2) (1,2,5) (7,2) (2,3,1) (6,1) (1,3,4) (8,1) (3,1,2) (1,4,3) (1,3,5) (3,2,1) (1,5,2) (1,5,3) (2,1,5) (3,1,5) (2,5,1) (3,5,1) (3,1,4) (5,1,3) (3,4,1) (5,3,1) (4,1,3) (4,3,1) (5,1,2) (5,2,1)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..600
Crossrefs
A072706 counts unimodal strict compositions.
A220377*6 counts these compositions of length 3.
A305713 is the unordered version.
A337462 is the not necessarily strict version.
A051424 counts pairwise coprime or singleton partitions.
A178472 counts compositions with a common factor > 1.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||UnsameQ@@#&&CoprimeQ@@#&]],{n,0,10}]
Formula
a(n) = A337562(n) - 1 for n > 1.