A337562 Number of pairwise coprime strict compositions of n, where a singleton is always considered coprime.
1, 1, 1, 3, 3, 5, 9, 7, 17, 13, 23, 41, 41, 67, 49, 75, 75, 155, 211, 229, 243, 241, 287, 395, 807, 537, 841, 655, 1147, 1619, 2037, 2551, 2213, 2007, 2663, 4579, 4171, 7123, 4843, 6013, 6215, 11639, 13561, 16489, 14739, 15445, 16529, 25007, 41003, 32803
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 12 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,1) (3,1) (2,3) (5,1) (2,5) (3,5) (2,7) (3,2) (1,2,3) (3,4) (5,3) (4,5) (4,1) (1,3,2) (4,3) (7,1) (5,4) (2,1,3) (5,2) (1,2,5) (7,2) (2,3,1) (6,1) (1,3,4) (8,1) (3,1,2) (1,4,3) (1,3,5) (3,2,1) (1,5,2) (1,5,3) (2,1,5) (3,1,5) (2,5,1) (3,5,1) (3,1,4) (5,1,3) (3,4,1) (5,3,1) (4,1,3) (4,3,1) (5,1,2) (5,2,1)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..600
Crossrefs
A101268 is the not necessarily strict version.
A220377*6 counts these compositions of length 3.
A337561 does not consider a singleton to be coprime unless it is (1), with non-strict version A337462.
A337664 looks only at distinct parts.
A072706 counts unimodal strict compositions.
A178472 counts compositions with a common factor.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&(Length[#]<=1||CoprimeQ@@#)&]],{n,0,10}]
Formula
a(n > 1) = A337561(n) + 1 for n > 1.