A337566 a(n) is the number of possible decompositions of the polynomial n * (x + x^2 + ... + x^q), where q > 1, into a sum of k polynomials, not necessarily all different; each of these polynomials is to be of the form b_1 * x + b_2 * x^2 + ... + b_q * x^q where each b_i is one of the numbers 1, 2, 3, ..., q and no two b_i are equal.
0, 0, 1, 1, 1, 3, 1, 2, 3, 3, 1, 5, 1, 3, 5, 3, 1, 6, 1, 5, 5, 3, 1, 7, 3, 3, 5, 5, 1, 9, 1, 4, 5, 3, 5, 9, 1, 3, 5, 7, 1, 9, 1, 5, 9, 3, 1, 9, 3, 6, 5, 5, 1, 9, 5, 7, 5, 3, 1, 13, 1, 3, 9, 5, 5, 9, 1, 5, 5, 9, 1, 12, 1, 3, 9, 5, 5, 9, 1, 9, 7, 3, 1, 13, 5, 3, 5, 7, 1, 15, 5, 5
Offset: 1
Keywords
Examples
For n = 3, the only solution, that corresponds to q = 2 and k = 2, is: 3 * (x + x^2) = (x + 2x^2) + (2x + x^2). For n = 26 as in the British Olympiad problem, a(26) = 3, and these three possible decompositions are: for k = 2, q = 25: 26 * (x + x^2 + x^3 + ... + x^24 + x^25) = (x + 2x^2 + 3x^3 + ... + 24x^24 + 25x^25) + (25x + 24x^2 + 23x^3 + ... + 2x^24 + x^25); for k = 4, q = 12: 26 * (x + x^2 + x^3 + ... + x^11 + x^12) = (x + 2x^2 + 3x^3 + ... + 11x^11 + 12x^12) + (12x + 11x^2 + 10x^3 + ... + 2x^11 + x^12) + (x + 2x^2 + 3x^3 + ... + 11x^11 + 12x^12) + (12x + 11x^2 + 10x^3 + ... + 2x^11 + x^12); for k = 13, q = 3: 26 * (x + x^2 + x^3) = 4 * (x + 2x^2 + 3x^3) + 4 * (2x + 3x^2 + x^3) + 3 * (3x + x^2 + 2x^3) + (2x + x^2 + 3x^3) + (3x + 2x^2 + x^3).
References
- A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 6 pp. 212-213 (1977).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- British Mathematical Olympiad 1977, Problem 6.
- Index to sequences related to Olympiads.
Programs
-
Maple
with(numtheory): Data:= 0, seq(tau(2*n)-3, n=2..150);
-
Mathematica
MapAt[# + 1 &, Array[DivisorSigma[0, 2 #] - 3 &, 92], 1] (* Michael De Vlieger, Dec 12 2021 *)
-
PARI
a(n) = if (n==1, 0, numdiv(2*n)-3); \\ Michel Marcus, Sep 06 2020
Comments