cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337569 Decimal expansion of the real solution to x^3 = 3 - x.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 1, 6, 6, 2, 7, 6, 2, 2, 2, 9, 6, 3, 4, 1, 3, 2, 1, 3, 1, 3, 7, 7, 3, 8, 1, 4, 8, 9, 5, 2, 6, 6, 2, 2, 7, 0, 6, 5, 7, 3, 9, 6, 9, 8, 9, 3, 4, 9, 5, 5, 2, 7, 5, 6, 8, 3, 6, 2, 4, 2, 5, 6, 3, 2, 6, 9, 5, 2, 7, 7, 3, 8, 6, 9, 1, 7, 4, 0, 3, 5, 9, 2, 1, 3, 9, 1, 8, 4, 4, 4, 1
Offset: 1

Views

Author

Michal Paulovic, Sep 01 2020

Keywords

Comments

x = (3 - (3 - (3 - ...)^(1/3))^(1/3))^(1/3).
The other two solutions are (w1*(81/2 + (3/2)*sqrt(741))^(1/3) + (81/2 - (3/2)*sqrt(741))^(1/3))/3 = -0.60670583... + 1.45061225...*i, where w1 = (-1 + sqrt(3)*i)/2, and its complex conjugate. With hyperbolic functions these solutions are -(1/3)*sqrt(3)*(sinh((1/3)*arcsinh((9/2)*sqrt(3))) - sqrt(3)*cosh((1/3)*arcsinh((9/2)*sqrt(3)))*i), and its complex conjugate. - Wolfdieter Lang, Sep 13 2022

Examples

			1.2134116627622296...
		

Crossrefs

Programs

  • MATLAB
    format long; solve('x^3+x-3=0'); ans(1), (eval(ans))
  • Maple
    Digits:=100; solve(x^3+x-3=0); evalf(%)[1];
  • Mathematica
    RealDigits[x /. FindRoot[x^3 + x - 3, {x, 1}, WorkingPrecision -> 100], 10, 90][[1]] (* Amiram Eldar, Sep 03 2020 *)
  • PARI
    solve(n=0,2,n^3+n-3)
    
  • PARI
    polroots(n^3+n-3)[1]
    
  • PARI
    polrootsreal(x^3+x-3)[1] \\ Charles R Greathouse IV, Oct 27 2023
    

Formula

Equals (3/2 + sqrt(741/324))^(1/3) - (-3/2 + sqrt(741/324))^(1/3).
From Wolfdieter Lang, Sep 13 2022: (Start)
Equals (1/6)*(324 + 12*sqrt(741))^(1/3) - 2/(324 + 12*sqrt(741))^(1/3).
Equals ((81/2 + (3/2)*sqrt(741))^(1/3) + w1*(81/2 - (3/2)*sqrt(741))^(1/3))/3, with w1 = (-1 + sqrt(3)*i)/2, one of the complex roots of x^3 - 1.
Equals (2/3)*sqrt(3)*sinh((1/3)*arcsinh((9/2)*sqrt(3))). (End)