A337570 Decimal expansion of the real positive solution to x^4 = 4-x.
1, 2, 8, 3, 7, 8, 1, 6, 6, 5, 8, 6, 3, 5, 3, 8, 2, 0, 8, 3, 0, 5, 2, 6, 4, 3, 2, 9, 5, 7, 0, 4, 7, 2, 1, 5, 0, 8, 7, 6, 4, 6, 2, 8, 1, 6, 2, 3, 9, 7, 0, 2, 0, 1, 2, 9, 7, 2, 8, 5, 7, 3, 2, 9, 8, 7, 9, 3, 6, 0, 5, 0, 2, 4, 0, 2, 3, 7, 4, 2, 7, 6, 1, 7, 1, 8, 4, 7, 8, 3, 5, 8, 0, 1, 2, 2, 9
Offset: 1
Examples
1.28378166586...
Crossrefs
Cf. A337571.
Programs
-
MATLAB
format long; solve('x^4+x-4=0'); ans(3), (eval(ans))
-
Mathematica
RealDigits[x /. FindRoot[x^4 + x - 4, {x, 1}, WorkingPrecision -> 100], 10, 90][[1]] (* Amiram Eldar, Sep 03 2020 *)
-
PARI
solve(n=0,2,n^4+n-4)
-
PARI
polroots(n^4+n-4)[2]
-
PARI
polrootsreal(x^4+x-4)[2] \\ Charles R Greathouse IV, Oct 27 2023
Formula
Equals sqrt(sqrt(1/s) - s/16) - sqrt(s/16) where s = (sqrt(16804864/27) + 32)^(1/3) - (sqrt(16804864/27) - 32)^(1/3). [Simplified by Michal Paulovic, Jun 22 2021]
Comments