cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337593 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k * 3^(k-1) * a(n-k).

Original entry on oeis.org

1, 1, 5, 42, 573, 11226, 294804, 9946791, 417064365, 21187915362, 1278636342660, 90195692894451, 7338668846348844, 681052861293535251, 71405270562056271741, 8388541745045127600597, 1096298129481068449931085, 158383969954582566159384786, 25153555538082783169267336764
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k 3^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[Exp[(BesselI[0, 2 Sqrt[3 x]] - 1)/3], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp((BesselI(0,2*sqrt(3*x)) - 1) / 3).
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} 3^(n-1) * x^n / (n!)^2).