cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337597 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k * 6^(k-1) * a(n-k).

Original entry on oeis.org

1, 1, 8, 96, 1896, 55416, 2182752, 111162528, 7088997888, 550749341952, 51058009732608, 5556160183592448, 699989463219105792, 100917906076208203776, 16486415052067886690304, 3026039346413717945757696, 619431153899977856767131648, 140491838894751995366936641536, 35102748598142373142198776889344
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2020

Keywords

Crossrefs

Programs

  • Maple
    S:= series(exp((BesselI(0,2*sqrt(6*x))-1)/6),x,51):
    seq(coeff(S,x,j)*(j!)^2, j=0..50); # Robert Israel, Sep 06 2020
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k 6^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[Exp[(BesselI[0, 2 Sqrt[6 x]] - 1)/6], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp((BesselI(0,2*sqrt(6*x)) - 1) / 6).
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} 6^(n-1) * x^n / (n!)^2).