A337599 Number of unordered triples of positive integers summing to n, any two of which have a common divisor > 1.
0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 9, 5, 10, 0, 16, 2, 14, 7, 17, 0, 27, 1, 21, 11, 24, 6, 36, 1, 30, 15, 37, 2, 51, 1, 41, 25, 44, 2, 64, 5, 58, 25, 57, 2, 81, 13, 69, 31, 70, 3, 108, 5, 80, 43, 85, 17, 123, 5, 97, 46, 120, 6, 144, 6
Offset: 0
Keywords
Examples
The a(6) = 1 through a(16) = 5 partitions are (empty columns indicated by dots, A..G = 10..16): 222 . 422 333 442 . 444 . 644 555 664 . 666 . 866 622 633 662 663 844 864 884 642 842 933 862 882 A55 822 A22 A42 963 A64 C22 A44 A82 A62 C44 C33 C62 C42 E42 E22 G22
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10000
Crossrefs
A284825 is the case that is also relatively prime.
A307719 is the pairwise coprime instead of non-coprime version.
A335402 gives the positions of zeros.
A337604 is the ordered version.
A337605 is the strict case.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
Programs
-
Mathematica
stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And]; Table[Length[Select[IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]
Comments