A337604 Number of ordered triples of positive integers summing to n, any two of which have a common divisor > 1.
0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 6, 0, 13, 0, 15, 7, 21, 0, 37, 0, 39, 16, 45, 0, 73, 6, 66, 28, 81, 0, 130, 6, 105, 46, 120, 21, 181, 6, 153, 67, 189, 12, 262, 6, 213, 118, 231, 12, 337, 21, 306, 121, 303, 12, 433, 57, 369, 154, 378, 18, 583, 30, 435, 217, 465
Offset: 0
Keywords
Examples
The a(6) = 1 through a(15) = 7 triples (empty columns indicated by dots, A = 10): 222 . 224 333 226 . 228 . 22A 339 242 244 246 248 366 422 262 264 266 393 424 282 284 555 442 336 2A2 636 622 363 428 663 426 446 933 444 464 462 482 624 626 633 644 642 662 822 824 842 A22
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10000
Crossrefs
A337667 counts these compositions of any length.
A335402 lists the positions of zeros.
A337461 is the coprime instead of non-coprime version.
A337605*6 is the strict version.
A000741 counts relatively prime 3-part compositions.
A101268 counts pairwise coprime or singleton compositions.
A307719 counts pairwise coprime 3-part partitions.
A318717 counts pairwise non-coprime strict partitions.
A333227 ranks pairwise coprime compositions.
Programs
-
Mathematica
stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]
Comments