cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337615 T(n, k) = binomial(n, k)*sf(n-k)*sf(k) where sf is the subfactorial (A000166). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 0, 0, 2, 9, 0, 6, 0, 9, 44, 0, 20, 20, 0, 44, 265, 0, 135, 80, 135, 0, 265, 1854, 0, 924, 630, 630, 924, 0, 1854, 14833, 0, 7420, 4928, 5670, 4928, 7420, 0, 14833, 133496, 0, 66744, 44520, 49896, 49896, 44520, 66744, 0, 133496
Offset: 0

Views

Author

Peter Luschny, Sep 05 2020

Keywords

Examples

			Triangle starts:
[0]      1;
[1]      0, 0;
[2]      1, 0,     1;
[3]      2, 0,     0,     2;
[4]      9, 0,     6,     0,     9;
[5]     44, 0,    20,    20,     0,    44;
[6]    265, 0,   135,    80,   135,     0,   265;
[7]   1854, 0,   924,   630,   630,   924,     0,  1854;
[8]  14833, 0,  7420,  4928,  5670,  4928,  7420,     0, 14833;
[9] 133496, 0, 66744, 44520, 49896, 49896, 44520, 66744,     0, 133496.
		

Crossrefs

Cf. A000166 (T(n,0) and T(n,n)), A087981 (row sums).

Programs

  • Maple
    sf := n -> add((-1)^(n-j)*pochhammer(n-j+1, j), j=0..n):
    T := (n, k) -> binomial(n,k)*sf(n-k)*sf(k):
    seq(seq(T(n, k), k=0..n), n=0..9);