A337615 T(n, k) = binomial(n, k)*sf(n-k)*sf(k) where sf is the subfactorial (A000166). Triangle read by rows, for 0 <= k <= n.
1, 0, 0, 1, 0, 1, 2, 0, 0, 2, 9, 0, 6, 0, 9, 44, 0, 20, 20, 0, 44, 265, 0, 135, 80, 135, 0, 265, 1854, 0, 924, 630, 630, 924, 0, 1854, 14833, 0, 7420, 4928, 5670, 4928, 7420, 0, 14833, 133496, 0, 66744, 44520, 49896, 49896, 44520, 66744, 0, 133496
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 0; [2] 1, 0, 1; [3] 2, 0, 0, 2; [4] 9, 0, 6, 0, 9; [5] 44, 0, 20, 20, 0, 44; [6] 265, 0, 135, 80, 135, 0, 265; [7] 1854, 0, 924, 630, 630, 924, 0, 1854; [8] 14833, 0, 7420, 4928, 5670, 4928, 7420, 0, 14833; [9] 133496, 0, 66744, 44520, 49896, 49896, 44520, 66744, 0, 133496.
Programs
-
Maple
sf := n -> add((-1)^(n-j)*pochhammer(n-j+1, j), j=0..n): T := (n, k) -> binomial(n,k)*sf(n-k)*sf(k): seq(seq(T(n, k), k=0..n), n=0..9);