cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337992 a(n) = Sum_{k=0..n} (n+1)*2^(n+k)*hypergeom([-n, k-n+1], [2], 1/2). Row sums of A337617.

Original entry on oeis.org

1, 10, 70, 448, 2786, 17140, 104938, 640720, 3904738, 23762140, 144429770, 876959896, 5319995474, 32247562084, 195332428970, 1182430057888, 7153644523970, 43256701913260, 261441118446154, 1579452451096168, 9538212470700466, 57579647214814900, 347476026056519210
Offset: 0

Views

Author

Peter Luschny, Oct 19 2020

Keywords

Crossrefs

Cf. A337617.

Programs

  • Mathematica
    a[n_] := Sum[If[n==k, 2^n*(2^(n + 1) - 1), 2^(2*k + 1)*Sum[(-1)^j*2^(n - k - j)*Binomial[n + 1, j]*Binomial[2*n - j - k, n],{j, 0, n-k}]],{k, 0, n}]; Flatten[Table[a[n], {n, 0, 22}]] (* Detlef Meya, Jan 09 2024 *)

Formula

a(n) = Sum_{k=0..n} (if (n = k) then 2^n*(2^(n + 1) - 1) else 2^(2*k + 1)*Sum(j, 0..n - k) (-1)^j*2^(n - k - j)*binomial(n + 1, j)*binomial(2*n - j - k, n)). - _Detlef Meya, Jan 09 2024
a(n) ~ 2^n * 3^(n+1). - Vaclav Kotesovec, Jan 10 2024
Showing 1-1 of 1 results.