A337625 Odd composite integers m such that F(m)^2 == 1 (mod m) and L(m) == 1 (mod m), where F(m) and L(m) are the m-th Fibonacci and Lucas numbers, respectively.
2737, 4181, 5777, 6721, 10877, 13201, 15251, 29281, 34561, 51841, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100127, 105281, 113573, 118441, 146611, 161027, 162133, 163081, 179697, 186961, 194833, 197209, 219781, 228241, 231703, 252601, 254321
Offset: 1
Keywords
Links
- Dorin Andrica and Ovidiu Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math., 18 (2021), 47.
Programs
-
Mathematica
Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] && Divisible[LucasL[#, 1] - 1, #] &]
Extensions
More terms from Amiram Eldar, Sep 19 2020
Comments