A337632 Triangle read by rows: T(n,k) is the number of nonnegative integers m < n such that m^k - m == 0 (mod n), where 0 <= k < n.
1, 1, 2, 1, 3, 2, 1, 4, 2, 3, 1, 5, 2, 3, 2, 1, 6, 4, 6, 4, 6, 1, 7, 2, 3, 4, 3, 2, 1, 8, 2, 5, 2, 5, 2, 5, 1, 9, 2, 3, 4, 3, 2, 7, 2, 1, 10, 4, 6, 4, 10, 4, 6, 4, 10, 1, 11, 2, 3, 2, 3, 6, 3, 2, 3, 2, 1, 12, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 1, 13, 2, 3, 4, 5, 2
Offset: 1
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 ---+-------------------------------- 1 | 1; 2 | 1, 2; 3 | 1, 3, 2; 4 | 1, 4, 2, 3; 5 | 1, 5, 2, 3, 2; 6 | 1, 6, 4, 6, 4, 6; 7 | 1, 7, 2, 3, 4, 3, 2; 8 | 1, 8, 2, 5, 2, 5, 2, 5; 9 | 1, 9, 2, 3, 4, 3, 2, 7, 2; 10 | 1, 10, 4, 6, 4, 10, 4, 6, 4, 10; ... T(10,2) = 4 because 0^2 - 0 == 0 (mod 10), 1^2 - 1 == 0 (mod 10), 5^2 - 5 == 0 (mod 10), and 6^2 - 6 == 0 (mod 10).
Links
- Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)
Programs
-
Haskell
a337632t n k = length $ filter (\m -> (m^k - m) `mod` n == 0) [0..n-1]
-
Magma
[[#[m: m in [0..n-1] | m^k mod n eq m]: k in [0..n-1]]: n in [1..17]]; // Juri-Stepan Gerasimov, Oct 12 2020
-
PARI
T(n,k) = sum(m=0, n-1, Mod(m,n)^k == Mod(m,n)); \\ Michel Marcus, Sep 13 2020