A337655 a(1)=1; thereafter, a(n) is the smallest number such that both the addition and multiplication tables for (a(1),...,a(n)) contain n*(n+1)/2 different entries (the maximum possible).
1, 2, 5, 7, 15, 22, 31, 50, 68, 90, 101, 124, 163, 188, 215, 253, 322, 358, 455, 486, 527, 631, 702, 780, 838, 920, 1030, 1062, 1197, 1289, 1420, 1500, 1689, 1765, 1886, 2114, 2353, 2410, 2570, 2686, 2857, 3063, 3207, 3477, 3616, 3845, 3951, 4150, 4480, 4595, 4746, 5030, 5286, 5698, 5999, 6497, 6624, 6938, 7219, 7661, 7838, 8469, 8665, 9198, 9351, 9667, 9966
Offset: 1
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..3000 (a(1)-a(101) from Jean-Paul Delahaye, a(102)-a(1000) from Peter Kagey)
- Rémy Sigrist, C++ program for A337655
Crossrefs
Programs
-
Mathematica
terms=67;a[1]=b[1]=1;a1=b1={1};Do[k=a[n-1]+1;While[a2=Union@Join[{2k},Array[a@#+k&,n-1]];b2=Union@Join[{k^2},Array[b@#*k&,n-1]];Intersection[a2,a1]!={}||Intersection[b2,b1]!={},k++];a[n]=b[n]=k;a1=Union[a1,a2];b1=Union[b1,b2],{n,2,terms}];Array[a,terms] (* Giorgos Kalogeropoulos, Nov 15 2021 *)
Comments