A337672 Numbers with binary expansion Sum_{k = 0..w} b_k * 2^k such that the polynomial Sum_{k = 0..w} (X+k)^2 * (-1)^b_k is constant.
0, 9, 150, 153, 165, 195, 2268, 2282, 2289, 2364, 2394, 2406, 2409, 2454, 2457, 2469, 2499, 2618, 2646, 2649, 2661, 2702, 2709, 2723, 2829, 2835, 3126, 3129, 3150, 3157, 3171, 3213, 3219, 3339, 3591, 34680, 34740, 34764, 34770, 34785, 35576, 35700, 35756
Offset: 1
Examples
The first 16 integers, alongside their binary representations and associate polynomials, are: k bin(k) P(k) -- ------ -------------- 0 0 0 1 1 -X^2 2 10 2*X+1 3 11 -2*X^2-2*X-1 4 100 X^2+6*X+5 5 101 -X^2-2*X-3 6 110 -X^2+2*X+3 7 111 -3*X^2-6*X-5 8 1000 2*X^2+12*X+14 9 1001 -4 10 1010 4*X+6 11 1011 -2*X^2-8*X-12 12 1100 8*X+12 13 1101 -2*X^2-4*X-6 14 1110 -2*X^2+4 15 1111 -4*X^2-12*X-14 We have constant polynomials for k = 0 and k = 9, so a(1) = 0 and a(2) = 9.
Programs
-
PARI
is(n) = { my (b=Vecrev(binary(n))); poldegree(p=sum(k=1, #b, ('X+k-1)^2 * (-1)^b[k]))<=0 }
Comments