A337690 a(n) is the number of primitive nondeficient numbers (A006039) dividing n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Examples
The least nondeficient number, therefore the least primitive nondeficient number is 6. So a(1) = a(2) = a(3) = a(4) = a(5) = 0 as all primitive nondeficient numbers are larger, and therefore not divisors; and a(6) = 1, as only 1 primitive nondeficient number divides 6, namely 6 itself. 60 has the following 12 divisors: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. Of these, only 6 and 20 are in A006039, thus a(60) = 2.
Links
Programs
Formula
a(n) = Sum_{d|n} A341619(d) = Sum_{d|n} [1==A341620(d)]. - Corrected by Antti Karttunen, Feb 21 2021
a(A005100(n)) = 0.
a(A006039(n)) = 1.
a(A023196(n)) >= 1.
a(n) <= A341620(n). - Antti Karttunen, Feb 22 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A006039(n) = 0.3... (see A006039 for a better estimate of this constant). - Amiram Eldar, Jan 01 2024
Extensions
Data section extended to 120 terms by Antti Karttunen, Feb 21 2021
Comments