A337695 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are not pairwise coprime, where a singleton is always considered coprime.
34, 40, 69, 70, 81, 88, 98, 104, 130, 138, 139, 141, 142, 160, 162, 163, 168, 177, 184, 197, 198, 209, 216, 226, 232, 260, 261, 262, 274, 276, 277, 278, 279, 282, 283, 285, 286, 288, 290, 296, 321, 324, 325, 326, 327, 328, 337, 344, 352, 354, 355, 360, 369
Offset: 1
Keywords
Examples
The sequence together with the corresponding compositions begins: 34: (4,2) 163: (2,4,1,1) 277: (4,2,2,1) 40: (2,4) 168: (2,2,4) 278: (4,2,1,2) 69: (4,2,1) 177: (2,1,4,1) 279: (4,2,1,1,1) 70: (4,1,2) 184: (2,1,1,4) 282: (4,1,2,2) 81: (2,4,1) 197: (1,4,2,1) 283: (4,1,2,1,1) 88: (2,1,4) 198: (1,4,1,2) 285: (4,1,1,2,1) 98: (1,4,2) 209: (1,2,4,1) 286: (4,1,1,1,2) 104: (1,2,4) 216: (1,2,1,4) 288: (3,6) 130: (6,2) 226: (1,1,4,2) 290: (3,4,2) 138: (4,2,2) 232: (1,1,2,4) 296: (3,2,4) 139: (4,2,1,1) 260: (6,3) 321: (2,6,1) 141: (4,1,2,1) 261: (6,2,1) 324: (2,4,3) 142: (4,1,1,2) 262: (6,1,2) 325: (2,4,2,1) 160: (2,6) 274: (4,3,2) 326: (2,4,1,2) 162: (2,4,2) 276: (4,2,3) 327: (2,4,1,1,1)
Links
Crossrefs
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335238 does not consider a singleton coprime unless it is (1).
A337600 counts 3-part partitions in the complement.
A000740 counts relatively prime compositions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A337461 counts pairwise coprime 3-part compositions.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337666 ranks pairwise non-coprime compositions.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,100],!(SameQ@@stc[#]||CoprimeQ@@Union[stc[#]])&]
Comments