A337696 Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.
0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1
Keywords
Examples
The sequence together with the corresponding compositions begins: 0: () 512: (10) 2304: (3,9) 2: (2) 514: (8,2) 2560: (2,10) 4: (3) 520: (6,4) 2568: (2,6,4) 8: (4) 544: (4,6) 2592: (2,4,6) 16: (5) 640: (2,8) 4096: (13) 32: (6) 1024: (11) 8192: (14) 34: (4,2) 2048: (12) 8194: (12,2) 40: (2,4) 2050: (10,2) 8200: (10,4) 64: (7) 2052: (9,3) 8224: (8,6) 128: (8) 2056: (8,4) 8226: (8,4,2) 130: (6,2) 2082: (6,4,2) 8232: (8,2,4) 160: (2,6) 2088: (6,2,4) 8320: (6,8) 256: (9) 2176: (4,8) 8704: (4,10) 260: (6,3) 2178: (4,6,2) 8706: (4,8,2) 288: (3,6) 2208: (4,2,6) 8832: (4,2,8)
Links
Crossrefs
A337667 counts the non-strict version.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A333219 is Heinz number.
- A333228 ranks compositions whose distinct parts are pairwise coprime.
- A335236 ranks compositions neither a singleton nor pairwise coprime.
- A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
- A337666 ranks the non-strict version.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2]; Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]
Comments