A337714 Euler totient function phi(N) divided by the multiplicative order of 3 modulo N, with N = N(n) = floor((3*n-1)/2), for n >= 1.
1, 1, 1, 1, 1, 2, 1, 2, 4, 1, 2, 1, 1, 2, 2, 2, 1, 4, 2, 1, 1, 2, 1, 2, 2, 1, 4, 5, 1, 2, 2, 2, 1, 1, 4, 1, 2, 4, 1, 2, 6, 1, 2, 4, 3, 2, 2, 2, 6, 2, 2, 2, 1, 8, 5, 2, 4, 1, 4, 1, 12, 2, 2, 2, 2, 1, 2, 1, 3, 8, 1, 2, 4, 2, 4, 1
Offset: 1
Examples
The pairs [N(n),a(n)] begin, for n >= 1: [1, 1], [2, 1], [4, 1], [5, 1], [7, 1], [8, 2], [10, 1], [11, 2], [13, 4], [14, 1], [16, 2], [17, 1], [19, 1], [20, 2], [22, 2], [23, 2], [25, 1], [26, 4], [28, 2], [29, 1], [31, 1], [32, 2], [34, 1], [35, 2], [37, 2], [38, 1], [40, 4], [41, 5], [43, 1], [44, 2], ... The pairs [N(n)= floor((3*n-1)/2), P(N(n)) = A053446(n)] begin, for n >= 1: [1, 1], [2, 1], [4, 2], [5, 4], [7, 6], [8, 2], [10, 4], [11, 5], [13, 3], [14, 6], [16, 4], [17, 16], [19, 18], [20, 4], [22, 5], [23, 11], [25, 20], [26, 3], [28, 6], [29, 28], [31, 30], [32, 8], [34, 16], [35, 12], [37, 18], [38, 18], [40, 4], [41, 8], [43, 42], [44, 10], ...
Programs
-
Mathematica
a[n_] := EulerPhi[(f = Floor[(3*n - 1)/2])] / MultiplicativeOrder[3, f]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
-
PARI
a(n) = my(N=(3*n-1)\2); eulerphi(N)/znorder(Mod(3, N)); \\ Michel Marcus, Oct 22 2020
Comments