A337731 a(n) is the smallest k >= 1 such that k*n is a Moran number.
18, 9, 6, 21, 9, 3, 3, 19, 2, 19, 18, 7, 9, 3, 3, 37, 9, 1, 6, 199, 1, 9, 9, 37, 199, 6, 1, 3, 9, 1663, 12, 937, 6, 1117, 1657, 1361, 3, 3, 3, 17497, 18, 1, 12, 10909, 1, 14563, 9, 18541, 17551, 199999, 3, 3, 18, 87037, 1108909, 157141, 2, 154981, 9, 1483333
Offset: 1
Examples
For n = 6, (1*6) / digsum(1*6) = 1, (2*6) / digsum(2*6) = 12 / 3 = 4, (3*6) / digsum(3*6) = 18 / 9 = 2 = prime(1), so a(6) = 3. For n = 7, (1*7) / digsum(1*7) = 1, (2*7) / digsum(2*7) = 14 / 5, (3*7) / digsum(3*7) = 21 / 3 = 7 = prime(4), so a(7) = 3.
Programs
-
Magma
moran:=func
; a:=[]; for n in [1..60] do k:=1; while not moran(k*n) do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; a[n_] := Module[{k = 1}, While[!moranQ[k*n], k++]; k]; Array[a, 60] (* Amiram Eldar, Sep 19 2020 *)
Comments