A337736 The number of cubefull numbers (A036966) between the consecutive cubes n^3 and (n+1)^3.
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 4, 2, 1, 3, 0, 3, 1, 2, 1, 3, 2, 0, 2, 5, 1, 3, 1, 1, 3, 3, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 3, 6, 1, 1, 1, 4, 1, 1, 3, 3, 1, 3, 4, 1, 2, 3, 1, 2, 3, 2, 3, 2, 3, 3, 2, 1, 4, 2, 1, 1, 0, 7, 1, 1, 4, 3, 2, 2, 2, 3, 3, 2, 0, 4, 2, 4
Offset: 1
Keywords
Examples
a(2) = 1 since there is one cubefull number, 16 = 2^4, between 2^3 = 8 and 3^3 = 27.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- P. Shiu, The distribution of cube-full numbers, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295. See section 3, p. 291.
Programs
-
Mathematica
cubQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 2; a[n_] := Count[Range[n^3 + 1, (n + 1)^3 - 1], _?cubQ]; Array[a, 100]
-
Python
from math import gcd from sympy import integer_nthroot, factorint def A337736(n): def f(x): c = 0 for w in range(1,integer_nthroot(x,5)[0]+1): if all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): c += integer_nthroot(z//y**4,3)[0] return c return f((n+1)**3-1)-f(n**3) # Chai Wah Wu, Sep 10 2024
Formula
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = A362974 - 1 = 3.659266... . - Amiram Eldar, May 11 2023
Comments