cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A362974 Decimal expansion of Product_{p prime} (1 + 1/p^(4/3) + 1/p^(5/3)).

Original entry on oeis.org

4, 6, 5, 9, 2, 6, 6, 1, 2, 2, 5, 0, 0, 6, 5, 6, 9, 4, 1, 2, 7, 7, 4, 3, 1, 1, 0, 8, 9, 1, 3, 6, 2, 5, 8, 6, 2, 1, 3, 0, 5, 4, 3, 3, 6, 7, 2, 8, 3, 2, 5, 6, 5, 3, 8, 4, 7, 5, 7, 6, 9, 2, 4, 0, 1, 5, 3, 0, 3, 4, 1, 8, 0, 8, 6, 5, 7, 3, 5, 2, 3, 8, 7, 2, 1, 8, 0, 7, 7, 5, 8, 9, 0, 2, 6, 8, 4, 6, 2, 3, 4, 9, 0, 9, 7
Offset: 1

Views

Author

Amiram Eldar, May 11 2023

Keywords

Comments

The coefficient c_0 of the leading term in the asymptotic formula for the number of cubefull numbers (A036966) not exceeding x, N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)) (Bateman and Grosswald, 1958; Finch, 2003).

Examples

			4.65926612250065694127743110891362586213054336728325...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.

Crossrefs

Cf. A036966, A090699 (analogous constant for powerful numbers), A244000, A337736, A362973, A362975 (c_1), A362976 (c_2).
Cf. A051904.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, 0, 0, -1, -1}, {0, 0, 0, 4, 5}, m]; RealDigits[(1 + 1/2^(4/3) + 1/2^(5/3)) * (1 + 1/3^(4/3) + 1/3^(5/3)) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    prodeulerrat(1 + 1/p^4 + 1/p^5, 1/3)

Formula

Equals 1 + lim_{m->oo} (1/m) Sum_{k=1..m} A337736(k).

A338326 The number of biquadratefree powerful numbers (A338325) between the consecutive squares n^2 and (n+1)^2.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2020

Keywords

Comments

Dehkordi (1998) proved that for each k>=0 the sequence of numbers m such that a(m) = k has a positive asymptotic density.

Examples

			a(2) = 1 since there is one biquadratefree powerful number, 8 = 2^3, between 2^2 = 4 and 3^2 = 9.
		

Crossrefs

Programs

  • Mathematica
    bqfpowQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], MemberQ[{2, 3 }, #] &]; a[n_] := Count[Range[n^2 + 1, (n + 1)^2 - 1], _?bqfpowQ]; Array[a, 100]

A371186 Indices of the cubes in the sequence of cubefull numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 13, 15, 18, 20, 23, 24, 29, 32, 34, 38, 39, 43, 45, 48, 50, 54, 57, 58, 61, 67, 69, 73, 75, 77, 81, 85, 88, 90, 94, 96, 99, 102, 105, 107, 110, 113, 117, 124, 126, 128, 130, 135, 137, 139, 143, 147, 149, 153, 158, 160, 163, 167, 169, 172, 176
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2024

Keywords

Comments

Equivalently, the number of cubefull numbers that do not exceed n^3.
The asymptotic density of this sequence is 1 / A362974 = 0.214626074... .
If k is a term of A371187 then a(k) and a(k+1) are consecutive integers, i.e., a(k+1) = a(k) + 1.

Examples

			The first 4 cubefull numbers are 1, 8, 16, and 27. The 1st, 2nd, and 4th, 1, 8, and 27, are the first 3 cubes. Therefore, the first 3 terms of this sequence are 1, 2, and 4.
		

Crossrefs

Similar sequences: A361936, A371185.

Programs

  • Mathematica
    cubQ[n_] := n == 1 || AllTrue[FactorInteger[n], Last[#] >= 3 &]; Position[Select[Range[10^6], cubQ], _?(IntegerQ[Surd[#1, 3]] &)] // Flatten
    (* or *)
    seq[max_] := Module[{cubs = Union[Flatten[Table[i^5*j^4*k^3, {i, 1, Surd[max, 5]}, {j, 1, Surd[max/i^5, 4]}, {k, Surd[max/(i^5*j^4), 3]}]]], s = {}}, Do[If[IntegerQ[Surd[cubs[[k]], 3]], AppendTo[s, k]], {k, 1, Length[cubs]}]; s]; seq[10^6]
  • PARI
    iscub(n) = n == 1 || vecmin(factor(n)[, 2]) >= 3;
    lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(iscub(k), c++; if(ispower(k, 3), print1(c, ", "))));}

Formula

A036966(a(n)) = A000578(n) = n^3.
a(n+1) - a(n) = A337736(n) + 1.
a(n) ~ c * n, where c = A362974.

A337737 Least number k such that there are exactly n cubefull numbers between k^3 and (k+1)^3.

Original entry on oeis.org

1, 2, 6, 15, 12, 25, 43, 73, 480, 1981, 3205, 9038, 16099, 376340, 211318, 2461230, 2253517, 16907618, 106308537, 312911063
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2020

Keywords

Comments

a(n) = least k such that A337736(k) = n.
Shiu (1991) proved that infinitely many values of k exist for every n. Therefore, this sequence is infinite.

Examples

			a(0) = 1 since there are no cubefull numbers between 1^3 = 1 and 2^3 = 8.
a(1) = 2 since there is one cubefull number, 16 = 2^4, between 2^3 = 8 and 3^3 = 27.
a(2) = 6 since there are 2 cubefull numbers, 243 = 3^5 and 256 = 2^8, between 6^3 = 216 and 7^3 = 343.
		

Crossrefs

Programs

  • Mathematica
    cubQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 2; f[n_] := Count[Range[n^3 + 1, (n + 1)^3 - 1], _?cubQ]; mx = 8; s = Table[0,{mx}]; c = 0; n = 1; While[c < mx, i = f[n] + 1; If[i <= mx && s[[i]] == 0, c++; s[[i]] = n]; n++] ;s
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A337737(n):
        if n == 0: return 1
        a, k = 0, 1
        while True:
            m, c = k**3, 0
            for x in range(1,integer_nthroot(m,5)[0]+1):
                if all(d<=1 for d in factorint(x).values()):
                    for y in range(1,integer_nthroot(z:=m//x**5,4)[0]+1):
                        if gcd(x,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c += integer_nthroot(z//y**4,3)[0]
            if c-a-1 == n:
                return k-1
            k += 1
            a = c # Chai Wah Wu, Apr 23 2025

Extensions

a(12)-a(16) from David A. Corneth, Sep 18 2020
a(17)-a(19) from Bert Dobbelaere, Sep 19 2020

A371187 Numbers k such that there are no cubefull numbers between k^3 and (k+1)^3.

Original entry on oeis.org

1, 11, 16, 23, 72, 84, 140, 144, 197, 208, 223, 252, 286, 296, 300, 306, 313, 353, 477, 500, 502, 525, 528, 620, 671, 694, 721, 734, 737, 751, 785, 802, 827, 858, 900, 913, 916, 976, 1026, 1056, 1059, 1074, 1080, 1143, 1182, 1197, 1230, 1268, 1281, 1284, 1324
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2024

Keywords

Comments

Positions of 0's in A337736.
This sequence has a positive asymptotic density (Shiu, 1991).

Crossrefs

Programs

  • Mathematica
    cubQ[n_] := (n == 1) || Min @@ FactorInteger[n][[;; , 2]] > 2; Select[Range[1000], ! AnyTrue[Range[#^3 + 1, (# + 1)^3 - 1], cubQ] &]
    (* or *)
    seq[max_] := Module[{cubs = Union[Flatten[Table[i^5*j^4*k^3, {i, 1, Surd[max, 5]}, {j, 1, Surd[max/i^5, 4]}, {k, Surd[max/(i^5*j^4), 3]}]]], s = {}}, Do[If[IntegerQ[Surd[cubs[[k]], 3]], AppendTo[s, k]], {k, 1, Length[cubs]}]; Position[Differences[s], 1] // Flatten]; seq[10^10]
  • PARI
    iscub(n) = n == 1 || vecmin(factor(n)[, 2]) >= 3;
    is(n) = for(k = n^3+1, (n+1)^3-1, if(iscub(k), return(0))); 1;

Formula

1 is a term since the two numbers between 1^2 = 1 and (1+1)^2 = 4, 2 and 3, are not cubefull.
Showing 1-5 of 5 results.