A337744 Numbers of the form Sum_{e in S} 2^(e-1) where S is a finite set of positive integers such that any element of S divides the sum of the elements of S.
0, 1, 2, 4, 7, 8, 16, 32, 39, 42, 64, 128, 175, 256, 291, 292, 512, 537, 1024, 2048, 2087, 2090, 2181, 2184, 2350, 4096, 8192, 8267, 16384, 16437, 16902, 16912, 32768, 34983, 34986, 65536, 131072, 131342, 131363, 131364, 133127, 133130, 133152, 262144, 524288
Offset: 1
Examples
The first terms, alongside their binary representation and corresponding set S, are: n a(n) bin(a(n)) S -- ---- ---------- ------------------ 1 0 0 {} 2 1 1 {1} 3 2 10 {2} 4 4 100 {3} 5 7 111 {1, 2, 3} 6 8 1000 {4} 7 16 10000 {5} 8 32 100000 {6} 9 39 100111 {1, 2, 3, 6} 10 42 101010 {2, 4, 6} 11 64 1000000 {7} 12 128 10000000 {8} 13 175 10101111 {1, 2, 3, 4, 6, 8} 14 256 100000000 {9} 15 291 100100011 {1, 2, 6, 9} 16 292 100100100 {3, 6, 9}
Links
Programs
-
PARI
is(n) = { my (b=Vecrev(binary(n)), s=select(k -> b[k], [1..#b])); vecsum(s) % lcm(s)==0 }
Comments