A337752 a(n) is the smallest Moran number m for which m/digsum(m) = prime(n) or 0 if no such number exists.
18, 27, 45, 21, 198, 117, 153, 114, 207, 261, 372, 111, 738, 516, 423, 954, 531, 732, 201, 1278, 511, 711, 1494, 801, 1164, 1818, 1236, 1926, 1090, 1017, 1016, 2358, 1233, 1251, 1341, 1812, 1413, 1141, 1503, 0, 1611, 1810, 3438, 2316, 3546, 3184, 2532, 2007
Offset: 1
Examples
A001101(1) = 18 and 18 / digsum(18) = 18/9 = 2 = prime(1), so a(1) = 18. A001101(2) = 21 and 21 / digsum(21) = 21/3 = 7 = prime(4), so a(4) = 21. A001101(3) = 27 and 27 / digsum(27) = 27/9 = 3 = prime(2), so a(2) = 27. A001101(5) = 45 and 45 / digsum(45) = 45/9 = 5 = prime(3), so a(3) = 45. A130338(1) = 173 = prime(40), so a(40) = 0.
Links
- David A. Corneth, Table of n, a(n) for n = 1..20000
Programs
-
Magma
f:=func
; a:=[]; for n in [1..50] do m:=NthPrime(n); while m le 9*NthPrime(n)*(Log(10,m)+1) and not f(n,m) do m:=m+NthPrime(n); end while; if (m div &+Intseq(m) eq NthPrime(n)) then Append(~a,m); else Append(~a,0); end if; end for; a;
Comments