cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A337782 Even composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 7 (mod m), where U(m)=A004187(m) and V(m)=A056854(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=7 and b=1, respectively.

Original entry on oeis.org

4, 8, 44, 104, 136, 152, 232, 286, 442, 836, 1364, 1378, 2204, 2584, 2626, 2684, 2834, 3016, 3926, 4636, 5662, 7208, 7384, 7676, 7964, 8294, 9164, 9316, 11476, 12524, 14824, 15224, 17324, 20026, 20474, 21736, 21944, 22814, 23804, 24616, 26596, 27028, 27404, 31124
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 20 2020

Keywords

Comments

For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b. The current sequence is defined for a=7 and b=1.

Crossrefs

Cf. A337630 (a=7, b=-1), A337777 (a=3, b=1), A337781 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[2, 20000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 7/2] - 7, #] && Divisible[ChebyshevU[#-1, 7/2]*ChebyshevU[#-1, 7/2] - 1, #] &]

Extensions

More terms from Amiram Eldar, Sep 21 2020

A338311 Even composites m such that A003499(m)==6 (mod m).

Original entry on oeis.org

4, 14, 28, 164, 434, 574, 1106, 5084, 5572, 7874, 8386, 13454, 13694, 19964, 21988, 33166, 39934, 40132, 95122, 103886, 113918, 148994, 157604, 215326, 216124, 256004, 277564, 306404, 341342, 366148, 571154, 660674, 662494, 764956, 771374, 876644, 981646, 1070926
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 22 2020

Keywords

Comments

If p is a prime, then A003499(p)==6 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=6 and b=1, V(m) recovers A003499(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020)
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337233 (sequence of odd terms), A337777 (a=3).

Programs

  • Mathematica
    Select[Range[2, 25000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 3] - 6, #] &]

Extensions

More terms from Amiram Eldar, Oct 22 2020

A338312 Even composites m such that A056854(m)==7 (mod m).

Original entry on oeis.org

4, 8, 10, 20, 40, 44, 104, 136, 152, 170, 190, 232, 260, 286, 442, 580, 740, 836, 890, 1364, 1378, 1990, 2204, 2260, 2584, 2626, 2684, 2834, 3016, 3160, 3230, 3926, 4220, 4636, 5662, 6290, 7208, 7384, 7540, 7676, 7964, 8294, 8420, 9164, 9316, 9320, 10070, 11476
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 22 2020

Keywords

Comments

If p is a prime, then A056854(p)==7 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=7 and b=1, V(m) recovers A056854(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020)
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A338082 (sequence of odd terms), A337777 (a=3), A338311 (a=6).

Programs

  • Mathematica
    Select[Range[2, 20000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 7/2] - 7, #] &]
Showing 1-3 of 3 results.