A337789 Numbers k such that trajectory of k under repeated calculation of fecundity (x -> A070562(x)) eventually reaches 0.
0, 1, 5, 10, 15, 18, 20, 21, 22, 24, 27, 30, 35, 40, 42, 44, 46, 48, 50, 51, 55, 59, 60, 63, 64, 66, 67, 69, 70, 74, 75, 77, 80, 83, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 115, 118, 120, 121, 122, 124, 127
Offset: 1
Examples
5 is a term in the sequence because the fecundity of 5 is 1, the fecundity of 1 is 10 and the fecundity of 10 is 0. 7 is not a term in the sequence because the fecundity of 7 is 7 and therefore the fecundity will never become 0.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
fec:= proc(n) local k, x,t; x:= n; for k from 0 do t:= convert(convert(x,base,10),`*`); if t = 0 then return k fi; x:= x+t od end proc: filter:= proc(n) local v; option remember; v:= fec(n); if v = 0 then true elif v = n then false else procname(v) fi end proc: select(filter, [$0..1000]); # Robert Israel, Apr 12 2021
-
Mathematica
fec[n_] := Length @ FixedPointList[# + Times @@ IntegerDigits[#] &, n] - 2; Select[Range[0, 100], FixedPoint[fec, #] == 0 &] (* Amiram Eldar, Sep 22 2020 *)
-
Python
from math import prod from functools import lru_cache def pd(n): return prod(map(int, str(n))) def A070562(n): s = 0 while pd(n) != 0: n, s = n + pd(n), s + 1 return s @lru_cache(maxsize=None) def ok(n): fn = A070562(n) if fn == 0: return True if fn == n: return False return ok(fn) print(list(filter(ok, range(128)))) # Michael S. Branicky, Apr 12 2021
Extensions
More terms from Amiram Eldar, Sep 22 2020
Offset changed by Robert Israel, Apr 12 2021