cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337802 Minimum value of the cyclic self-convolution of the first n terms of the characteristic function of primes.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Andres Cicuttin, Sep 22 2020

Keywords

Comments

In the first 1000 terms, a(n) = 1 only for n = 3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 47, 61, 73, 107, 109, 113, 181, 199, and 467.
Is there an index k such that a(n) = 0 for n > k ?

Examples

			The primes among the first 5 positive integers (1,2,3,4,5) are 2, 3, and 5, then the corresponding characteristic function of primes is (0,1,1,0,1) (see A010051) and the corresponding five possible cyclic self-convolutions are the dot products between (0,1,1,0,1) and the rotations of its mirrored version as shown below:
  (0,1,1,0,1).(1,0,1,1,0) = 0*1 + 1*0 + 1*1 + 0*1 + 1*0 = 1,
  (0,1,1,0,1).(0,1,0,1,1) = 0*0 + 1*1 + 1*0 + 0*1 + 1*1 = 2,
  (0,1,1,0,1).(1,0,1,0,1) = 0*1 + 1*0 + 1*1 + 0*0 + 1*1 = 2,
  (0,1,1,0,1).(1,1,0,1,0) = 0*1 + 1*1 + 1*0 + 0*1 + 1*0 = 1,
  (0,1,1,0,1).(0,1,1,0,1) = 0*0 + 1*1 + 1*1 + 0*0 + 1*1 = 3.
Then a(5)=1 because 1 is the minimum among the five values.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Table[If[PrimeQ[i], 1, 0], {i, 1, n}];
    Table[Min@Table[b[n].RotateRight[Reverse[b[n]], j], {j, 0, n - 1}], {n, 1, 100}]
  • PARI
    a(n) = vecmin(vector(n, k, sum(i=1, n, isprime(n-i+1)*isprime(1+(i+k)%n)))); \\ Michel Marcus, Sep 23 2020