cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337857 a(n) is the smallest positive integer m with no repeated digits such that A137564(n + m) = n, or a(n) = 0 if no m exists.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 70, 80, 90, 90, 0, 109, 120, 127, 136, 145, 154, 163, 172, 180, 190, 0, 209, 218, 230, 236, 245, 254, 263, 270, 280, 290, 0, 309, 318, 327, 340, 345, 354, 360, 370, 380, 390, 0, 409, 418, 427, 436, 450, 450, 460, 470, 480, 490, 0, 509, 518, 527, 536, 540
Offset: 1

Views

Author

Rodolfo Kurchan, Sep 26 2020

Keywords

Comments

Terms computed by Claudio Meller.
We set a(n)=0 when n has repeated digits; for example, a(11) = 0, a(22) = 0, a(100) = 0, a(101) = 0, since compact(c) cannot result in such n. Is n=450 the first other number that has no solution?

Crossrefs

Programs

  • PARI
    f(n) = {my(d=digits(n)); fromdigits(vecextract(d, vecsort(vecsort(d, , 9))))}; \\ A137564
    isokd(m) = my(d=digits(m)); #d == #Set(d); \\ A010784
    a(n) = my(d=digits(n)); if (#Set(d) == #d, my(m=1); while (!isokd(m) || (f(n+m) != n), m++); m); \\ Michel Marcus, Jan 13 2022
    
  • Python
    def has_repeated_digits(n): s = str(n); return len(s) > len(set(s))
    def A137564(n):
        seen, out, s = set(), "", str(n)
        for d in s:
            if d not in seen: out += d; seen.add(d)
        return int(out)
    def a(n):
        if n == 0 or has_repeated_digits(n): return 0
        m = 1
        while has_repeated_digits(m) or A137564(n+m) != n: m += 1
        return m
    print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Jul 23 2022