A337862 a(n) is the smallest number that can be partitioned into n ways as the sum of two Moran numbers.
0, 36, 63, 174, 198, 306, 312, 399, 1176, 930, 1296, 1989, 1110, 888, 2190, 1896, 2688, 3990, 3630, 3090, 3696, 3810, 8316, 6870, 4710, 12420, 11340, 9180, 13350, 12990, 14070, 14364, 14970, 9900, 15444, 14790, 15012, 18570, 19980, 25164, 23610, 25092, 23790
Offset: 0
Examples
0 cannot be written as the sum of two Moran numbers because A001101(1) = 18, so 0 is a term and a(0) = 0. 36 = 18 + 18 = A001101(1) + A001101(1), so a(1) = 36. 63 = 18 + 27 = A001101(1) + A001101(5) and 63 = 21 + 42 = A001101(2) + A001101(4), so a(2) = 63. 174 = 18 + 156 = 21 + 153 = 63 + 111 and 18, 21, 63, 111, 153, 156 are in A001101, so a(3) = 174. 198 = 27 + 171 = 42 + 156 = 45 + 153 = 84 + 114 and 27, 42, 45, 84, 153, 156, 171 are in A001101, so a(4) = 198.
Programs
-
Magma
a:=[]; moran:=func
; v:={m:m in [1..40000]|moran(m)}; for n in [0..40] do k:=0; while #RestrictedPartitions(k,2,v) ne n do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
m = 60000; morans = Select[Range[m], PrimeQ[#/Plus @@ IntegerDigits[#]] &]; mx = 43; s = Table[-1, {mx}]; n = 0; c = 0; While[c < mx && n <= m, If[(i = Length[IntegerPartitions[n, {2}, morans]] + 1) <= mx && s[[i]] == -1, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Oct 21 2020 *)