cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337876 Table read by rows, in which the n-th row lists all the primitive solutions k, in increasing order, such that k*sigma(k) = A337875(n).

Original entry on oeis.org

12, 14, 48, 62, 112, 124, 160, 189, 192, 254, 315, 351, 448, 508, 1984, 2032, 2560, 2728, 5580, 5616, 6156, 6534, 12288, 16382, 22464, 22860, 28672, 32764, 28800, 34000, 42000, 51200, 46500, 51200, 51200, 54250, 72800, 95697, 76230, 80028, 126976, 131056, 119700, 189875
Offset: 1

Views

Author

Bernard Schott, Oct 20 2020

Keywords

Comments

As the multiplicativity of sigma(k) ensures an infinity of solutions to the general equation m = k*sigma(k) (see A337873), Leo Moser asked if k*sigma(k) = q*sigma(q) has an infinity of primitive solutions, in the sense that (k', q') is not a solution for any k' = k/d, q' = q/d, d>1 (see References). This sequence lists in increasing order of m the primitive solutions (k, q).
A subset of primitive solutions: if 2^p-1 and 2^r-1 are distinct Mersenne primes (A000668), then k = (2^p-1) * 2^(r-1) and q = (2^r-1) * 2^(p-1) satisfy k*sigma(k) = q*sigma(q) = m = (2^p-1) * (2^r-1) * 2^(p+r-1) [see first 2 examples]. Hence, there exists an infinity of primitive solutions if the sequence A000043 of Mersenne exponents is infinite.

Examples

			The table begins:
   12,   14;
   48,   62;
  112,  124;
  160,  189;
  192,  254;
  315,  351;
  ...
1st row is (12, 14) because 12 * sigma(12) = 14 * sigma(14) = 336 = A337875(1) with p = 2 and r = 3.
2nd row is (48, 62) because 48 * sigma(48) = 62 * sigma(62) = 5952 = A337875(2) with p = 2 and r = 5.
16th row is (42000, 51200), (46500, 51200), (51200, 54250) because 42000 * sigma(42000) = 51200 * sigma(51200), 46500 * sigma(46500) = 51200 * sigma(51200) and  51200 * sigma(51200) = sigma54250 * sigma(54250) = 649999584000 = A337875(16). These 3 primitive solutions corresponding to the smallest m = 649999584000 have been found by _Michel Marcus_. The three other possible solutions (42000, 46500), (42000, 54250), (46500, 54250) are not primitive.
18th row is (76230, 80028) because 76230 * sigma(76230) = 80028 * sigma(80028) = 18979440480 = A337875(18). Note that 76230 * sigma(76230) = 80028 * sigma(80028) = 84942 * sigma(84942) = 18979440480 = A337873(3266) but (76230, 84942) and (80028, 84942) are not primitive solutions (see detailed example in A337875). These case have been found by _Jinyuan Wang_.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.

Crossrefs

Programs

  • PARI
    process(x, y, resp) = {my(vresp = Vec(resp)); for (i=1, #vresp, if (x/vresp[i][1] == y/vresp[i][2], return(resp));); listput(resp, [x, y]); resp;}
    findprim(res, mx) = {my(mp = Map()); my(resp = List()); for (i=1, #res, my(vx = mapget(mx, res[i])); for (j=1, #vx-1, for (k=j+1, #vx, resp = process(vx[j], vx[k], resp);););); resp;}
    upto(n) = {my(m = Map(), mx = Map(), res = List(), n = sqrtint(n), resp); for(i = 1, n, my(c = i*sigma(i)); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1); mapput(mx, c, concat(mapget(mx, c), i)), mapput(m, c, 1); mapput(mx, c, [i]);)); listsort(res, 1); res = Vec(select(x -> x <= (n+1)^2, res)); Vec(findprim(res, mx));}
    upto(10^11) \\ Michel Marcus, Oct 20 2020

Extensions

More terms from Michel Marcus, Oct 20 2020