A337877 Numbers of the form p^2*q where p and q are primes and p <= q.
8, 12, 20, 27, 28, 44, 45, 52, 63, 68, 76, 92, 99, 116, 117, 124, 125, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 244, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 343, 356, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452, 475, 477, 508, 524, 531, 539, 548, 549, 556, 575, 596, 603
Offset: 1
Keywords
Examples
a(3) = 20 is a term because 20=2^2*5 with 2 <= 5.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Contained in A337806.
Programs
-
Maple
N:= 3000: # for terms <= N P:= select(isprime, [2,seq(i,i=3..N/2,2)]): nP:= nops(P): R:= NULL: for i from 1 to nP do p2:= P[i]^2; for j from i to nP do x:= p2*P[j]; if x > N then break fi; R:= R, x od od: sort([R]);
-
Python
from sympy import primepi, primerange, integer_nthroot def A337877(n): def f(x): return int(n+x-sum(primepi(x//k**2)-a for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 29 2024