A337885 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.
0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 1, 405, 1368, 0, 0, 5, 7904, 4775706, 6711288, 0, 0, 15, 76880, 1522540416, 9923557498416, 1785683627824, 0, 0, 35, 486522, 132342705750, 234239763858347776, 12979826761630383196344, 53302696800142157920, 0
Offset: 2
Examples
Table begins with T(2,1): 0 0 0 0 0 0 0 ... 0 0 0 1 5 15 35 ... 0 6 405 7904 76880 486522 2300305 ... 0 1368 4775706 1522540416 132342705750 5076500214744 110809322249220 ... For T(3,4)=1, the chiral pair is ABCD-ABDC.
Links
- E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.
Crossrefs
Programs
-
Mathematica
m=2; (* dimension of color element, here a triangular face *) lw[n_,k_]:=lw[n, k]=DivisorSum[GCD[n,k],MoebiusMu[#]Binomial[n/#,k/#]&]/n (*A051168*) cxx[{a_, b_},{c_, d_}]:={LCM[a, c], GCD[a, c] b d} compress[x:{{, } ...}] := (s=Sort[x];For[i=Length[s],i>1,i-=1,If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s) combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1] CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *) CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n},m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]] CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]] pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *) row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]],1,-1] pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!] array[n_, k_] := row[n] /. j -> k Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten
Formula
The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
Comments