A337897 Number of achiral colorings of the 8 triangular faces of a regular octahedron or the 8 vertices of a cube using n or fewer colors.
1, 21, 201, 1076, 4025, 11901, 29841, 66256, 134001, 251725, 445401, 750036, 1211561, 1888901, 2856225, 4205376, 6048481, 8520741, 11783401, 16026900, 21474201, 28384301, 37055921, 47831376, 61100625, 77305501, 96944121
Offset: 1
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Crossrefs
Programs
-
Mathematica
Table[n^2(7+2n^2+3n^4)/12, {n,30}]
Formula
a(n) = n^2 * (7 + 2*n^2 + 3*n^4) / 12.
a(n) = 1*C(n,1) + 19*C(n,2) + 141*C(n,3) + 394*C(n,4) + 450*C(n,5) + 180*C(n,6), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
G.f.: x * (1+x) * (1 + 13*x + 62*x^2 + 13*x^3 + x^4) / (1-x)^7.
Comments