A337900 The number of walks of length 2n on the square lattice that start from the origin (0,0) and end at the vertex (2,0).
1, 16, 225, 3136, 44100, 627264, 9018009, 130873600, 1914762564, 28210561600, 418151049316, 6230734868736, 93271169290000, 1401915345465600, 21147754404155625, 320042195924198400, 4857445984927644900, 73916947787011560000, 1127482124965160372100
Offset: 1
Examples
a(2) = 16 counts the walks RRRL, RRLR, RLRR, LRRR, RRUD, RRDU, RDRU, RURD, RUDR, RDUR, URRD, DRRU, URDR, DRUR, UDRR, DURR of length 4.
Links
- R. J. Mathar, Random Walk on the Square Lattice: Return to (0,0) with or without passing (1,0) (Sep 2020)
Crossrefs
Programs
-
Maple
egf := BesselI(0, 2*x)*BesselI(2, 2*x): ser := series(egf, x, 40): seq((2*n)!*coeff(ser, x, 2*n), n = 1..19); # Peter Luschny, Dec 05 2024
Formula
a(n) = [A001791(n)]^2.
G.f.: x*4F3(3/2, 3/2, 2, 2; 1, 3, 3; 16*x).
D-finite with recurrence (n-1)^2*(n+1)^2*a(n) - 4*n^2*(2*n-1)^2*a(n-1) = 0.
a(n) = (2n)!*[x^(2n)] BesselI(0, 2x)*BesselI(2, 2x). - Peter Luschny, Dec 05 2024