cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337905 The number of walks of n steps on the hexagonal lattice that start at the origin and end at the adjacent vertex (1,0).

Original entry on oeis.org

1, 2, 15, 60, 340, 1680, 9135, 48440, 264726, 1446060, 7996296, 44396352, 248133600, 1392623232, 7850732175, 44413669872, 252098234674, 1435074678180, 8190821465970, 46860693370920, 268676908816680, 1543504863288960, 8883248453674920, 51210412534906560
Offset: 1

Views

Author

R. J. Mathar, Sep 29 2020

Keywords

Examples

			There are a(2)=2 paths with 2 steps: UD or DU, where R=(1,0), L=(-1,0), U=(1/2,sqrt(3)/2), u=(-1/2,sqrt(3)/2), D=(1/2,-sqrt(3)/2), d=(-1/2,-sqrt(3)/2).
There are a(3)=15 paths with 3 steps: 6 paths permutations of RuD, 6 permutations of RUd, and 3 permutations of RRL.
		

Crossrefs

Cf. A002898 (returns to origin), A337906, A337907.

Programs

  • Maple
    HexLat := proc(n,finx,finy)
        local a,L,R;
        a := 0 ;
        for L from 0 to n do
        for R from modp(n+finy-L,2) to n-L by 2 do
            a := a+ binomial(n,L) *binomial(n-L,R) *binomial(n-L-R,n/2+L/2-3*R/2+finx) *binomial(n-L-R,(n-L-R-finy)/2) ;
        end do:
        end do:
        a ;
    end proc:
    seq(HexLat(n,0,0),n=0..15) ; # A002898
    seq(HexLat(n,1,0),n=0..15) ; # A337905
    seq(HexLat(n,2,0),n=0..15) ; # A337906
    seq(HexLat(n,1/2,1),n=0..15) ; # A337905
  • Mathematica
    HexLat[n_, finx_, finy_] := Module[{a = 0, L, R}, For[L = 0, L <= n, L++, For[R = Mod[n + finy - L, 2], R <= n - L, R += 2, a = a + Binomial[n, L]*Binomial[n - L, R]*Binomial[n - L - R, n/2 + L/2 - 3*R/2 + finx]*Binomial[n - L - R, (n - L - R - finy)/2]]]; a];
    Table[HexLat[n, 1, 0], {n, 1, 24}] (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar *)
  • PARI
    seq(n)={my(g=sum(m=1, n+1, (3*m)!/m!^3*x^(2*m)*(1+2*x)^m, O(x^(n+2)))); Vec(g/6)} \\ Andrew Howroyd, Aug 09 2025

Formula

D-finite with recurrence (n+1)^2*a(n) -n*(n+1)*a(n-1) -24n^2*a(n-2) -36*n*(n-1)*a(n-3)=0.
a(n+1) = A002898(n)+2*a(n)+2*A337907(n)+A337906(n).
a(n) ~ 2^(n-1) * 3^(n + 1/2) / (Pi*n). - Vaclav Kotesovec, Apr 30 2024
a(n) = A002898(n+1) / 6. - Andrew Howroyd, Aug 09 2025