A337941 Numbers whose divisors are all Zuckerman numbers (A007602).
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 1111111111111111111, 11111111111111111111111
Offset: 1
Examples
6 is a term since all the divisors of 6, i.e., 1, 2, 3 and 6, are Zuckerman numbers.
Links
- Giovanni Resta, Zuckerman numbers, Numbers Aplenty
Crossrefs
Programs
-
Mathematica
zuckQ[n_] := (prod = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prod]; Select[Range[24], AllTrue[Divisors[#], zuckQ] &] (* Amiram Eldar, Oct 01 2020 *)
-
PARI
isok(m) = {fordiv(m, d, my(p=vecprod(digits(d))); if (!p || (d % p), return (0))); return (1);} \\ Michel Marcus, Oct 05 2020
Comments